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as shown in Fig. 4. Difficulties arise with this solution
because most objects do not have the idealized shape shown
in Fig. 4. The angle of contact between the water and the
object’s sides is primarily dependent upon the composition
of the material, not the angle that the object’s sides make
with the horizontal. Thus, a well waxed ping-pong ball will
produce a water surface like that shown in Fig. 5 rather
than one like that shown in Fig. 4.

A different approach to the problem is to use a lack of
surface tension to keep the object in the center. If soap is
added to the water the object will wet better. Wetted
objects drag water along with them when they move while
objects which are not wetted move through the water with
less obstruction. The friction that a wetted object
experiences is sufficient to keep it from moving to the edge
of a glass unless the object is already very near the edge.

Ignoring the whole question of surface tension there
are other solutions. One is to stir the water, If the water is

whirling around in the glass any floating objects will move
toward the center. If it is not legitimate to stir the water
the same thing can be accomplished by placing the glass on
a turntable.

Another solution involves Bemoulli’s principle. Simply
pour water directly on the object while it is in the center of
the glass. The stream of water will hold the object in the
center. Ping-pong balls work especially well for this
situation.

Still another, but probably not the final solution, is to
hold a charged comb directly over the object. Here again
ping-pong balls work well.

Reference

1. James T. Schreiber, ‘“Barroom Physics Part II,”” Phys.
Teach. 13, 418 (1975).

Stepwise approximation to an orbit (revisited)

The Project Physics Course Handbook' describes an
activity entitled “Stepwise Approximation to an Orbit” in
which the student plots the motion of a comet over a series
of short time intervals, applying Newton’s laws of motion
and gravitation at each step. The resulting approximate
orbit may, in principle, be used to verify Kepler’s laws of
planetary motion, illustrating the, fact that Kepler’s laws
follow from Newton’s laws.

In concept the activity is excellent, but the iterative
procedure which is described leads to disappointing results.
Students typically feel frustrated that increased care fails to
improve their orbits. The procedure can be modified,
however, to produce quite good results.

We begin with the approximation that over short
intervals the gravitational force felt by a comet is constant
in magnitude and direction. Over each interval, then, the
comet undergoes simple projectile motion. Its displacement
in the nth interval is
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Af, =D, At+%EF) (AL? (1)

which we shall abbreviate r, F(nyinert. * T(n)grav..
The final velocity for the nth interval, which is also the
initial velocity for the following interval, is

Dpeq = By +B(r,) A (2)

Those familiar with the derivation presented in The
Project Physics Course Handbook will recognize the
velocity given in Eq. (2) as the velocity said to be
maintained throughout the nth interval. The displacement
that results is

AF =3 At +3(r,) (At @)

which is clearly in error. Moreover, the gravitational
component of the displacement is inadvertently omitted in
the first iteration. Figure 1 shows the results of the Project
Physics version of the activity both with and without the
initial gravitational term. In both cases the comet deviates
from the theoretical orbit immediately and the period is at
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variance with Kepler’s third law. The errors to converge to
zero as At approaches zero, but the convergence is too slow
to produce satisfactory results for hand-generated orbits. It
is noteworthy that the Project Physics Course finally relies
on filmloops of computer-generated orbits to make its
point.

Equations (1) and (2) can be translated directly into a
graphical iterative procedure. To avoid repeated
computations we first represent Arg,,,. graphically as a
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Fig. 2. The function, Arg,, = k/r, is ploited on log-log
paper for the primary interval At= 0.205 yr, and for
supplementary intervals A#/2 and At/4.
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Fig. 1. The theoretical orbit of a comet with r, =5 A.U.
and v, =1.62 A.U./yr is compared with three different
stepwise approximations: s, the Project Physics procedure
followed exactly, a, the Project Physics procedure with a
gravitational component added in the first iteration, and e,
the proposed alternate procedure, The respective periods,
measured by adding the iteration intervals, are 5.54 yr,
4,96 yr, and 5.19 yr. The theoretical period is 5.20 yr. In
the alternate procedure the first ten iterations use
At = 0.205 yr. The next four use A#/2, and the last three
use At/4. All three stepwise approximations were
computed, rather than graphically constructed, to allow
comparison of the intrinsic errors alone,

function of r. From Newton’s law of gravitation it follows
that

() =-(GM/P )T, )
By substituting into Eq. (1) we find

Doy, =~ (CAGM(DL)? P)F = - (RIP)F, (5)
where % is constant if ¢ is held fixed. The function
Argray. = k/r* can be plotted as a straight line on log-log
paper as in Fig. 2. (For our purposes the most convenient
units of length, mass, and time are the astronomical unit,
the solar mass, and the year. In these units
G =47 (AU M, 1yr2)

The actual plotting of the orbit may now begin as in
Fig. 3. Choosing the initial position, A, and velocity, §,, we
construct AB = Af(g)ipert.- Measuring the distance from
the sun, S, to the approximate midpoint of AB we find the
corresponding value of Ar(;ygray., and plot BC = Ar(5)grav.
along the line BS. C becomes. the initial position for the
second iteration. ’

We may find AP(j)inert. by multiplying Eq. (2)
through by At.

A.'z(l)iner';. = i;oAt + é(ro) (At)z

= A + 2A?(o)gmv_ (6)

(o)inert.

In Fig. 3a, AX is the desired vector. If we make the
approximation that SA{[SB, an approximation already
involved in treating the vector g(r,) as a constant, a vector
equal to AX originating at C can be constructed as shown in
Fig. 3a. Having constructed AF(q)inert., We can evaluate
AF(1ygrav, and continue the process as in Fig. 3b.
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Fig. 8. The first two iterations using the alternate
procedure are illustrated. A is the initial position,
AB=10,At, and BC = Af(oygrav.. AX = AP(1yiners.. TO
construet CE =AX, plot S) on SA such that AD = BC.

Extend line DC and plot E such that CE = DC. Note that in
practice X need not be plotted. The second iteration
continues by plotting EF = CG = Af(1)gray., extending GF,
and plotting FH=GF. A, C, and F ‘iie on the approximate
orbit.

For orbits of any appreciable eccentricity the
displacement per time interval may become so large as the
comet approaches the sun that the constant field
assumption no longer holds. When this happens, At can be
divided in half by bisecting A%y, and evaluating AFy,,, .
from a second graph based on the interval A¢/2. The family
of functions based on At, At/2, At/4, ..., are represented

on log-log paper by equally spaced parallel lines (see Fig. 2).

To evaluate the results, the theoretical orbital
parameters must be known in terms of the initial
conditions. If the initial velocity is chosen perpendicular to
the initial position vector the eccentricity is given by

e=1(v,’r,/GM)-1]| )

The value of e determines which conic section will be
produced. The initial position is the perihelion or aphelion
point according to whether v,? is greater than or less than
GM/r,. For elliptical orbits the semimajor axis, a, is given
by r,/(1+e) or ro /(1 —e) depending on whether 7, is the
aphelion or perihelion point. The theoretical period may be
determined from Kepler's third law: T?/a* =K, where
K= 1/M in our unit system.

Superimposing the theoretical orbit on the stepwise
approximation is a good exercise for the student. The
intrinsic errors of the method we have presented are small
enough that a comparison with the theoretical orbit
essenfially indicates the degree of graphical precision.
Careful students are thereby rewarded for their efforts.
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A fun experiment with Newton’s second law

Walter F. Anderson, Jr. and Leo Takahashi

Pennsylvania State University, Beaver Campus, Monaca, Pennsylvania 15061

While preparing for a laboratory for two year
technology degree students, we came up with an
experiment involving Newton’s second law which was fun
and straightforward but which has not previously been
published in this journal. The time had arrived for an
experiment to demonstrate this law. Thoughts of Atwood’s
machines, air tracks, and little carts were floating through
our minds. But surely students believe Newton’s second
law. Hasn’t everything else which we have told them been
true as proven by us in lecture demonstration or themselves
in laboratory? Let’s not prove Newton’s law! Surely the
physics class did last year; probably even Newton did.
Instead why not use Newton’s second law to measure the
mass of some object?

Once again thoughts of gliders, weights, and pulleys
started flying through our minds. No! Stop! Let’s get away
from this equipment designed mainly for a physies
laboratory which the student will most likely never see
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again and take the experiment to his environment. Yes, it
was finally clear: the students should measure the mass of
something in their environment by pushing or pulling it
with a known force. They could measure the resulting
acceleration and calculate its mass with the help of
Newton’s second law. Probably the object should be
something large so it would not accelerate too fast or could
not easily be placed on a scale.

A car was the obvious answer.In clear, warm weather a
car belonging to one of the instructors, a Datsun 240Z, was
chosen. The location of the experiment was one of the
parking lots on campus (Fig. 1). At other times the object
of interest was a laboratory cart, or the instructor’s chair.
In these cases the experiment was done in the hallway
outside of the physics 1ab (Fig. 2). Since all of these objects
had wheels, the frictional forces should remain relatively
constant and presumably could easily be taken into
account,
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